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Introduction 

  What is a digital filter 

 A filter is a system that is designed to remove some 

component or modify some characteristic of a 

signal 

 A digital filter is a discrete-time LTI system which 

can process the discrete-time signal. 

 There are various structures for the implementation 

of digital filters 

 The actual implementation of an LTI digital filter can 

be either in software or hardware form, depending 

on applications 



Introduction 

  Basic elements of digital filter structures 

 Adder has two inputs and one output. 

 Multiplier (gain) has single-input, single-output. 

 Delay element delays the signal passing through it by 

one sample. It is implemented by using a shift register. 
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Introduction 

 Computational complexity 
    refers to the number of arithmetic operations (multiplications, 

divisions, and additions) required to compute an output value y(n) 

for the system. 

 Memory requirements 

    refers to the number of memory locations required to store the 

system parameters, past inputs, past outputs, and any 

intermediate computed values. 

 Finite-word-length effects in the computations 

    refers to the quantization effects that are inherent in any digital 

implementation of the system, either in hardware or in software. 

  The major factors that influence the  choice of a 

specific structure 

return 



IIR Filter Structures 

  The characteristics of the IIR filter 

 IIR filters have Infinite-duration Impulse Responses  

 The system function H(z) has poles in 

 An IIR filter is a recursive system 
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IIR Filter Structures 

In this form the difference equation is implemented 

directly as given. There are two parts to this filter, 

namely the moving average part and the recursive 

part (or the numerator and denominator parts). 

Therefore this implementation leads to two versions: 

direct form I and direct form II structures 

  Direct form 
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  Direct form I 
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  Direct form II 
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IIR Filter Structures 

In this form the system function H(z) is written as a 

product of second-order sections with real coefficients 

  Cascade form 
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IIR Filter Structures 
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Each second-order section (called biquads) is implemented in 

a direct form ,and the entire system function is implemented 

as a cascade of biquads. 
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  If N>M, some of the biquads have numerator coefficients 

that are zero, that is, either b2k = 0 or b1k = 0 or both          

b2k = b1k = 0 for some k. 

  if N>M and N is odd, one of the biquads must have ak2 = 0, 

so that this biquad become a first-order section. 
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Example  
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IIR Filter Structures 

  Parallel form 

In this form the system function H(z) is written as a sum 

of sections using partial fraction expansion. Each section 

is implemented in a direct form. The entire system 

function is implemented  as a parallel of every section. 
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IIR Filter Structures 







 











2

1

1
1

2

1

1

1

10
0

1
)(

N

k kk

kk

zaza

zbb
GzH

 if N is odd, the system has one first-order 

section and          second-order sections. 

 if N is even, the system has      second-order 

sections. 

2

1N

2

N



Example  
























1111

111

)
2

1

2

1
(1)

2

1

2

1
(1)

8

1
1)(

4

3
1(

)21)(
3

2
1)(

2

1
1(10

)(

zjzjzz

zzz
zH

1

4

1

3

1

2

1

1

)
2

1

2

1
(1)

2

1

2

1
(1)

8

1
1()

4

3
1(

)(
 















zj

A

zj

A

z

A

z

A
zH

57.1425.12  ,57.1425.12  ,68.17  ,93.2 4321 jAjAAA 

21

1

21

1

2

1
1

82.2650.24

32

3

8

7
1

90.1275.14
)(



















zz

z

zz

z
zH



21

1

21

1

2

1
1

82.2650.24

32

3

8

7
1

90.1275.14
)(



















zz

z

zz

z
zH

-12.9 z-1 7/8 

-3/32 
z-1 

-14.75 

26.82 z-1 1 

-1/2 
z-1 

24. 5 

)(nx )(ny



IIR Filter Structures 

  Transposition theorem 

If we reverse the directions of all branch transmittances 

and interchange the input and output in the flow graph, 

the system function remains unchanged.  

The resulting structure is called a transposed structure 

or a transposed form. 
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FIR Filter Structures 

  The characteristics of the FIR filter 

 FIR filters have Finite-duration Impulse Responses, 
thus they can be realized by means of DFT  

 The system function H(z) has the ROC of             , 
thus it is a causal system 

 An FIR filter is a nonrecursive system 

 FIR filters can be designed to have a linear-phase 
response 
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FIR Filter Structures 

In this form the difference equation is implemented 

directly as given.  

  Direct form 
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FIR Filter Structures 

In this form the system function H(z) is converted into 

products of second-order sections with real coefficients 

  Cascade form 
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FIR Filter Structures 

  Linear-phase form 

  When an FIR filter has a linear phase response, its 

impulse response exhibits the above symmetry 

conditions. In this form we exploit these symmetry 

relations to reduce multiplications by about half. 

  Linear phase: 

The phase response is a linear function of frequency  

  Linear-phase condition 
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If N is odd 
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If N is odd 
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If N is even 
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If N is even 
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FIR Filter Structures 

  Frequency sampling form 

This structure is based on the DFT of the impulse 

response h(n) and leads to a parallel structure. It is also 

suitable for a design technique based on the sampling 

of frequency response H(z)  
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It has N equally spaced poles on the unit circle 
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FIR Filter Structures 

Problems 

  It requires a complex arithmetic implementation 

It is possible to obtain an alternate realization in which only 

real arithmetic is used. This realization is derived using the 

symmetric properties of the DFT and the          factor. k

NW 

 It has poles on the unit circle, which makes this filter 

critically unstable 

We can avoid this problem by sampling H(z) on a circle 

|z|=r  where the radius r is very close to one but is less 

than one. 
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By using the symmetric properties of the DFT and the          

factor, a pair of single-pole filters can be combined to form 

a single two-pole filter with real-valued parameters. 
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So the kth and (N-k)th resonant filters can be combined to form 

a second-order section           with real-valued coefficients )(zHk
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If N is even, the filter has a pair of real-valued poles rz 

If N is odd, the filter has a single real-valued pole rz 
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second-order section 

b1k z-1 

z-1 

b0k 

)
2

cos(2 k
N

r


2
r

first-order sections 

z-1  r 

)0(H

)(0 zH

z-1  r 

)
2

(NH

)(
2

zH N



N is even 
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FIR Filter Structures 

  Fast convolution form 

x(n): N1-point sequence 

h(n): N2-point sequence 

L ≥ N1 + N2 - 1 

return 
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